Effects of mineral aerosols on the summertime climate of southwest Asia: Incorporating subgrid variability in a dust emission scheme

نویسندگان

  • M. P. Marcella
  • A. B. Eltahir
چکیده

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. [1] Improvements in modeling mineral aerosols over southwest Asia are made to the dust scheme in a regional climate model by representing subgrid variability of both wind speed and surface roughness length. The new module quantifies wind variability by using model meteorology while assuming that wind speed follows a Gaussian distribution. More specifically, wind variability is approximated by dry convective eddies within the planetary boundary layer, forced by sensible heat fluxes at the surface. Incorporating subgrid variability of wind increases aerosol optical depth (AOD) over the region by nearly 35% while reducing incoming shortwave radiation by an additional 5–10 W/m 2. Likewise, the dust scheme is modified to include the variability of surface roughness length over southwest Asia. Here an empirical distribution of roughness length for each grid cell is calculated based on the USGS's 4 km resolution land cover data set. However, incorporating roughness length variability does not significantly alter dust emissions over the region due to the relatively homogeneous land cover conditions. Nevertheless, including spatial variability for wind results in aerosol optical depth values closer to observational data sets, particularly MISR, which performs better than MODIS over this region. However, RegCM3's dust model still underestimates AOD over southwest Asia. In addition to improvements made in RegCM3's dust model, this work examines the effects of mineral aerosols on the mean monthly, surface summertime climate of southwest Asia. It is shown that dust emissions reduce average summertime surface temperatures by approximately 0.5°C while attenuating shortwave incident radiation by nearly 25 W/m 2. Thus, the emission of dust is an important surface process in shaping the summertime climate over southwest Asia. However, both a warm bias in surface temperatures and overestimation of incoming shortwave radiation still exist in RegCM3 and need to be further addressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of the emission of mineral dust aerosols by electric forces

[1] Climate forcing by mineral dust aerosols is one of the most uncertain processes in our current understanding of climate change. The main natural sources of dust aerosols are blowing dust, dust devils, and dust storms. Electric fields larger than 100 kV/m have been measured in these phenomena. Theoretical calculations and laboratory experiments show that these electric fields produce electri...

متن کامل

An Assessment of Wind Erosion Schemes in Dust Emission Simulations over the Middle East

Extended abstract 1- INTRODUCTION        Atmospheric aerosols, solid and liquid particles in the atmosphere, play a crucial role in the atmospheric radiation equilibrium. These particles have an influence on the scattering and absorption of short wavelength radiation, and on the other hand, affect radiation absorption and emission in long wavelengths. Dust particles are among the importan...

متن کامل

Climate effects of dust aerosols over East Asian arid and semiarid regions

East Asia is a major dust source in the world. Mineral dusts in the atmosphere and their interactions with clouds and precipitation have great impacts on regional climate in Asia, where there are large arid and semiarid regions. In this review paper, we summarize the typical transport paths of East Asian dust, which affect regional and global climates, and discuss numerous effects of dust aeros...

متن کامل

Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model

[1] We describe an updated model of the dust aerosol cycle embedded within the NASA Goddard Institute for Space Studies ‘ModelE’ atmospheric general circulation model (AGCM). The model dust distribution is compared to observations ranging from aerosol optical thickness and surface concentration to deposition and size distribution. The agreement with observations is improved compared to previous...

متن کامل

Impact of air pollution on wet deposition of mineral dust aerosols

[1] Mineral dust aerosols originating from arid regions are simulated in an atmospheric global chemical transport model. Based on model results and observations of dust concentration, we hypothesize that air pollution increases the scavenging of dust by producing high levels of readily soluble materials on the dust surface, which makes dust aerosols effective cloud condensation nuclei (CCN). Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010